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NOMENCLATURE

CL = lift coefficient

Cp = pressure coefficient

c = chord of the airfoil

CDU = velocity potential due to uniformly distributed vortex

CDL = velocity potential due to linearly distributed vortex

CD1 = coefficient defined in Eq. (12)

CD2 = coefficient defined in Eq. (12)

CS = coefficient defined in Eq. (12)

ds =--mal! surface element

E = numerical error

F = functions defined in Eq. (10)

G = Green's function

H = cascade spacing or pitch

h = spacing between two flat plates

N = total number of panel

P, = surface normal

p = field point or local static pressure

q = running index over surface integration

= distance vector in (x,y) coordinate

r = distance vector in (E,r) coordinate

S = panel length
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NOMENCLATURE (continued)

t = time

U = reference velocity

e = total velocity

r¢B = surface moving velocity

Vo = onset flow velocity

v = disturbance velocity

= incoming tiow velocity

W = vortex-sheet surface in the wake

x,y = global ground-fixed coordinate

a = angles defined in Eq. (10) or angle of attack

r = circulation around an airfoil

y = voitex strength

0 = blade stagger angle

IC = ratio of panel lengths

A = boundary surfaces

X = a constant defined in Eq. (10)

= local panel coordinate

p = fluid density

o = source strength

0 = total scalar velocity potential

= disturbance velocity potential



ko = inflow velocity potential

W = angular rotational speed

Sub- or Superscripts

e = exact solution

m = cascade modification

s = tangent to the surface

sa = single airfoil

u = upper surface

v = vortex

= lower surfbce
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ABSTRACT

A time-accurate potential-flow calculation method has been
developed for unsteady incompressible flows through two-dimensional
multi-blade-row linear cascades. The method represents the boundary
surfaces by distributing piecewise linear-vortex and constant-source
singularities on discrete panels. A local coordinate is assigned to each
independently moving object. Blade-shed vorticity is traced at each time
step. The unsteady Kutta condition applied is nonlinear and requires zero
blade trailing-edge loading at each time. Its influence on the solutions
depends on the blade trailing-edge shapes.

Steady biplane and cascade solutions are presented and compared to
exact solutions and experimental data. Unsteady solutions are validated
with the Wagner function for an airfoil moving impulsively from rest and
the Theodorsen function for an oscillating airfoil. The shed vortex motion
and its interaction with blades are calculated and compared to an analytic
solution. For multi-blade-row cascade, ;he potential effect between blade
rows is predicted using steady and quasi unsteady calculations. The
accuracy of the predictions is demonstrated using experimental results for a
one-stage turbine stator-rotor.
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509501 Element 62936N, and the Submarine Auxiliary Systems Exploratory Development

Project, Program Element 62323N, Block ND3A, Project RB23P1i, administrated at tht

David Taylor Research Center.

INTRODUCTION

Unsteady flow analyses for turbomachinery can be categorized as linear or nonlinear.

The linear method uses either the linear potential approach (Verdon and Caspar, 1984) or

the linear Euler approach (Hall and Crawley, 1987). The nonlinear method includes both



thL nonlinear Euler and the Reynolds avervged Navier-Stokes (Rai, 1987 and Giles, 1988)

methods. Linear methods use the isentropic and irrotational assumptions. Quandt (1989)

has shown that the solution obtained from the unsteady linear potential-flow method gives

correct fluid enthalpy. pressure, and velocity changes obtained from the traditional nonlinear

Euler turbomachine energy equation. The disadvantage of using the linear potential analsis

is that the method does not allow for incoming vorticity. Engineering experience (Lee et al.,

1990) shows that linear potential methods are the simplest models which give accurate

predictions of the very large changes in lift and moment for shock-free suhsonic fhow>.

Computational efforts increase sharply when Reynolds averaged Navier-Stokes methods are

used. However, more complete physics of fluid flow, e.g. flow separation, nonlinear vortex

interaction and turbulence, can be predicted. Due to the greater completeness of the

nonlinear methods, these methods can be used to supplement the simplified linear

approaches during a design process when experimental data are not available.

In this report, a time-accurate 2-[) linear potential-flow calculation method is

developed. Viscosity effects are partially accounted for in the analysis by using a nonlinear

Kutta condition at the airfoil trailing edge. In applying the Kutta condition, the wake of the

airfoil is represented by discrete vortices (Kim and Mook, 198b and Yao et al., I 'l) ). The

method developed is capahle of providing flow predictions for variou, combinations t

steady and unsteady body motions. The emphasis of the present paper is on cascade flows,

particularly unTisteadV cascade flows. Athough the numerical metho)d deve.I ped is ge neral.

cascade flows re(Juire special analv>es. When calculating unsteady flows between two, blade

rows, the vortex/blade interaction rekluircs detailed treatment. The Lnste;d casctde



predictions are possible only when the building blocks of steady cascade flow calculations

and some basic unsteady single airfoil calculations are predicted correctly. This report

compares calculated results for single airfoils and cascades under similar conditions. It

concludes with a quasi unsteady solution for a two-blade-row cascade (Dring et al., 1982).

MATHEMATICAL MODEL

Consider a 2-D system configuration consisting of multiple airfoils and/or nonlifting

bodies, or a linear multi-blade-row cascade which execute arbitrary relative motions between

airfoils/bodies or between cascades in an incompressible potential flow. Let the surface of

the solid boundaries be denoted by A(R,t), where R is a distance vector in a global ground-

fix.-' coordinate system (x,y) and t is time. The shear layer next to the surface A and the

shed vorticity in the wake are assumed to consist of thin layers modelled as vortex sheets.

The vortex sheets in the wake are symbolized by W(R,t). They are allowed to move with

the local fluid particles. 'I he flow field can be represented by a total scalar velocity

potential ( as follows.

where ,, and represent the inflow velocity potential and velocity at infinity, including

any incoming onset flow and induced flow due to a near-field disturbance. ( and 7,

represent the disturbance velocity potential -i( velocity due to airfoils/bodies and the wake

vorticitv. Both the total and disturbance velocity potentials satisfy Iaplace's equation

3



2- = :- 0 . (2)

The problem posed is to find the velocity potential 4 and the free wake vortex structure. To

ensure a unique solution to the problem, the disturbance velocity potential is subjected to:

(1) a kinematical condition applied at the surface A where fluid particles maintain the same

normal velocity as the moving surface; (2) the Kutta-Joukowski condition of equal pressure

between the upper and lower airfoil surfaces applied at the trailing edge; (3) total

circulation is conserved at any time, i.e. Kelvin's theorem; and (4) a dynamical condition of

continuous pressure applied at free wake vortex sheets.

Using the classical Green's function approach and Morino's formulation (Morino and

Tseng, 1978) in the global coordinate system, Eqs. (1) and (2) are transformed into an

integral equation

I aG(p q)
4)(p) w4 = ~ q ___f __dn a W (3)

+aG(pq) G(p,q)a ]dS.
27r , an a

Here p represents the field point on A while q is the running index over all panels. The

symbol i)w represents the velocity potential due to shed wake vortices and -A = n - + n,

and i w are the unit outward surface normal vectors to A and the upper side of W. The

Green's function is given by G=en(1/r), where r is the distance between p and q. This

formulation allows IV(p)l to be equal to the vortex sheet strength y(p) on A. a4)/an is

given from the normal boundary condition

4



v-" = 'FIB." (4a)

or

o , -- -). (4b)

ar. an

where VB is the velocity, including translational and rotational speeds, of the surface A. For

a finite number of airfoils/bodies, 84, 0/an is prescribed as an onset flow %&. Equation (3)

is a Fredholm integral equation of the second kind for the unknown it.

The calculation of unsteady force and moment on each moving body/airfoil is

reduced to an integration using the unsteady Bernoulli's equation in the global coordinate

system as

a(D V P.~ (5

at2 p p 2

Equation (5) can also be nondimensionalized by a reference velocity U. If one uses the

original symbols for nondimensional variables, the following formula in a body-fixed

coordinate is obtained

P-P" -2 --- V2VO++V . (6)p u 2/2 at

Here the velocity potential of the onset flow is assumed to be steady.

5



NUMERICAL METHOD

Singularity Distributions

The surface A is discretized into small line segments. The control point for each

segment is located at the center of the segment. The normal to the surface is approximated

by the perpendicular to the straight segment. The distributions of the vortices and the

sources on each segment are assumed to be linear and constant, respectively. The velocity

potential at a field point p due to a line segment q of length S with a constant unit-strength

source, i.e. o ()= 1, in a local line-segment coordinate ( ,r ) as shown in Fig. 1 is

2 c 0 (p,q) = fI a(&) In- d
2 r(p,t) (7)

= S-,qpFl-&PF3- SF 4 .

The velocity potential at the point p due to a constant unit-strength vortex, i.e. y ( ) 1, is

S i -

27r,04yp,q) =f3 y(&) arctan P
P2 (8)

- PF-F-1F3

2 4

The velocity potential corresponding to a linearly distributed vortex sheet, i.e. y ( ) = 2/S, is

21r4 q)= J2 y( ) arctan 0 d
2 lip (9)

_ rip 1 li2 2 $2 , 1 , ,I
2 2S 4,-ri- 2Sp3

In Eqs. (7)-(9) we have

0



F 1 = al-a 2

F2 = 7-U1-a22nX
F3 = ln(R1/R2)
F4 = ln(RR 2)

21  (10)1= [(S+ y2+ ,t 2

R2= S + / l(io2 + /2
a, = arctan. 1

a2 = arctan
"ip

The function F 2 is multiple valued when &p>0 and 7pI approaches zero, i.e. 1 =1 when rip

crosses the positive real axis from positive nip, I =-1 when Y7p crosses the positive real axis

from negative rip, and I =0 for all other cases. Thus the velocity potential at an ith segment

due to a jth segment which contains uniformly and linearly distributed vortices, i.e.

y (E) = (yj + yj + 1)/2 + (yj + 1j) /2S, as shown in Fig. 2, and a constant source is given by

4)0 = CD1yj+CD2oyj. 1 +CSoJ , (11)

where

CDlV = -(CDU-CDL.)
2 (12)

CD24 = I(CDU.+ CDL),
2

and CDUj and CDLj represent the velocity potentials due to the uniformly and the linearly

distributed vortices from Eqs. (8) and (9), and CSj is due to the uniformly distributed source

from Eq. (7). The velocity potential at p due to a discrete shed vortex in the wake is

7



21i,; p,q) = y"(q) arctanYP -Y4 (13)
Xp -q

Matrix Equation for Bound Vortex y

For a unique solution outside of the surface A described by Eq. (3), the flow inside

the surface A can be assumed at rest. If each body/airfoil surface A is divided into N

segments, the interior flow-quiescent condition requires

V4 = 4j. - i = 0 i=1,2...,N-1 . (14)

The no-penetration boundary condition, Eq. (4), is imposed at the control point of each line

segment. By substituting Eqs. (3), (4), (11) and (12) into Eq. (14), a set of linear algebraic

equations for the bound vortex y is formed

(CDi 1 -CDlj, )y1 +CD2ift-CD2jx )yv.j
N-I

+ , (CDIl -CD 14, 1 +CD2.,-CD2i_,,)Yj+,
j1M (15)N' I' -1

= (CSJ-CSi-Q) -j.1 anj jI j-1

Here ITS represents the total time steps. Equation (15) forms N-I equations for N+ 1

unknown values of y. Hence two extra equations are required for obtaining a unique

solution.

Extra Conditions for Nonlifting Body

An unsteady potential flow past a nonlifting body generally does not shed vorticitv in

8



the wake. Hence an extra condition can be obtained by requiring

Y = YV. 1 (16)

for a closed body. where y1 and y'N,1 are the first and the last vortex strengths as defined in

Eq. (15). Since no lift will be generated, a zero net circulation around the body can be

used, i.e.

N

E S/j+yj.,) = 0. (17)
j-1

Equations (15), (16) and (17) form a set of linear equations for determining Y on a non-

lifting configuration.

Nonlinear Kutta Condition for Lifting Body

The Kutta-Joukowski condition was originally applied to two-dimensional steady flow

in order to obtain a finite velocity at the trailing edge, and as a consequence, the flow is

uniquely determined. This hypothesis implicitly accounts for viscous effects otherwise

neglected in the potential-flow theory. Instead of requiring a velocity condition at the

trailing edge, a pressure condition is used in the present numerical model. Since the trailing

edge does not account for any loading, the pressures there on the upper surface (sub- or

superscript u) and the lower surface (sub- or superscript 9) are required to be the same. It

is worth noting that this condition does not refrain the trailing edge from having a variation

of pressure in the time domain. Using Eq. (6), one obtains

9



2a ( *1.- 40) [(V+ B). "( +  (18)

P 1 = 0

Since the impermeable boundary condition is applied at A, the flow on the upper and lower

surfaces is along the tangents (sub- or superscript s) to both surfaces. Use Eq. (1) and the

following relations

N

2 -)(19)

V, " (-v. +Vs-vt VB- V)
2 - ,

Eq. (18) is cast as

( N-i S +S SN

2,, j., 2VT +zv-i (20)= -r(t-,,t) -v -v s.

VT

where VT = 2(A t) t and 1 is Lhe circulation of the airfoil and defined as positive in a

clockwise direction. Equation (20) is linear in y if VT is considered to be a constant. In

the present study, Eq. (20) is solved iteratively to account for the nonlinearity of VT. Both

Yao et al. (1989) and Kim and Mook (1986) applied a more restricted Kutta condition at

th, trailing edge by requiring y I=yN+,j =0 and placing a wake vortex of unknown strength

there. This implies that their algebraic equations are linear and require an optimization

technique to produce a deterministic system.

For the present scheme, according to Eq. (15) one more equation is needed in order

to obtain a unique y-distribution for a lifting body. This condition is provided by requiring

10



the velocity gradients along the tangents at the trailing edge from both the upper and lower

surfaces to be the same, i.e.

(aT)U = (ayi)# (21)
as as

Allowing the equality of velocity gradients from the upper and the lower surfaces at the

trailing edge further ensures the smooth merge of two jet flows. Expcrience also indicates

that this condition offers stable and accurate predictions. When a second-order backward

differencing scheme is used, Eq. (21) is transformed to

_ [K,(2+ic)y 1 -(I +:i 2y2 +y3 ]+(I +ic) 2yN-yN_(
2 %)(22)TN*1 - :c(2+i:,)

where Ku=SN.1/ S N, Y: =S2/SI and 1C =SN.I(1 +KU)/S 2(I+K:.). Hence Eqs. (15), (20) and (22)

form a determinate system of nonlinear equations for determining y for a lifting

configuration. They are solved using an iterative scheme.

Determination of Shed Vorticity

Kelvin's theorem states that the total circulation of the fluid at any instant is

conserved. This condition provides a mechanism to shed vorticity into the wake. At each

time step, a uniformly distributed vortex segment with strength yw is generated in the wake

adjacent to the airfoil trailing edge. The length Sw of the vortex segment is the distance the

trailing edge moves between t-at and t. At a subsequent time step this uniform line vortex

is replaced by a discrete concentrated vorticity of equivalent strength located at the center of

11



the segment. The generated trailing-edge vortex segment relates to the airfoil circulation r

as follows

r(t)-r(t-At) +S(t)VyW(t) 0 . (23)

At At

The model depicted in Eq. (23) yields stable solutions which are independent of the time-

step used. However, for the present calculations the solutions were found to be dependent

on the time step used if a concentrated vorticity model was adopted for modeling the

trailing-edge vortex generation. The latter model was used in Kim and Mook's model

(1986). Since the time step used by Kim and Mook was extremely small, they may not be

aware of the time dependency of the discrete vortex generating mechanism at the trailing

edge.

The wake vortices are convected downstream and develop a vorticity field. In the

present numerical scheme, these vortices are tracked through the flow field using Lagrangian

techniques. The convection of these discrete vortices is modelled by a predictor-corrector

scheme as

-(1)(2 arw(t+At) = F'()+vw[(t),t]At (24a)
-42) -41)rw(t+At) = rw (t+At)

1 (24b)
+2 ( 'VWr4 (tAt),t]-VW[w(),t] )At

2)

FW(t+At) = r,, (t+At) . (24c)

The superscripts in parentheses represent the iteration number within each time step. The

corrector in Eq. (24b) is particularly important for a body oscillating at low frequency. For

12



such a flow, 81/at is relatively small in Eqs. (18) and (19). Both equations imply that the

nonlinear effect in the Kutta condition is strong and the velocity prediction within each time

step plays a dominant role in obtaining a converged solution. Giesing (1969) also used a

predictor-corrector scheme to convect the vortices in the wake, but treated the intermediate

iteration step as a complete separate "time step". The present calculation only uses the

corrector to locate the new vortex positions without performing the rest of the calculations

at the next time step. Hence the calculation time only increases slightly. Kim and Mook

(1986) used oniy Lq. (z4a) for vortex convection, but their time step is rather small.

Special Considerations for a Cascade

For a cascade of blades with pitch H, each blade generates a circulation. If the

cascade runs along the y-axis, there exists an upwash at upstream infinity of the cascade and

a downwash at downstream infinity. In conjunction with a specified inflow onset condition

as shown in Eq. (4), an extra term is needed to ensure a unique upstream inflow condition,

i.e.

-1 n Hm (25)anj-1 2H,.i

for a multi-blade-row cascade flow, where MJ is the total number of blade rows, Hnij is the

mj-th cascade spacing or pitch, and Pj is the blade circulation from the mj-th cascade.

In a cascade configuration, the velocity potentials at a field point p due to a point

source and a point vortex on a blade surface q can be written as

13



4*,(p,q) = --21 ln[sinhH(x-x,) cH(YP-Yq)

+ Cosh 2H(xp -Xq) sin2H(yp-Yd)I'2  (26a)

-(P'q) = I arctan sinH(yp-yq) (26b)
2 n sinhH(xp -Xq)

where fl=nt/H. Equation (11) is therefore modified to

*= E O*,:;,

- (0i4w +Y44'wy) +E a4 -4j.) +y/4(,Oi -4?j) (7l J (27)
ji +

where superscripts sa and m represent the corresponding single airfoil and its cascade

modification. (O's are defined as

CoSa 1ln 22y 2= t -l v xi +yi  (28a)
27Z

= IarctanYi , (28b)'O ,- 2"n x1

and the cascade modification is

I n _[ sinh i2 x, +sin 2 Hy111
2n (Hx) 2+(Hy1 )2  (29a)

xsinHy,-ysinhHx, (29b)- 27arctan ihHx+ysinly,(

A complete integration of the velocity potentials for the source and the vortex distributions

on each segment was performed numerically for the cascade modification term ,' in

Eq. (27).

14



APPLICATIONS

The present calculation method was first validated by comparison to known steady

flows. Steady-flow comparisons are presented for two cases. The first case is for flow past a

biplane, which has an exact conformal mapping solution (Robinson and Laurmann, 1956).

The second steady flow calculation is for flows past a NACA65-1210 cascade for which the

solutions compared to measured values (Herrig et al., 1957). For unsteady flows, four cases

calculated using the present method are presented. They include the following three basic

blade motions: an airfoil moving impulsively from rest, an oscillating airfoil, and a vortex

interacting with an airfoil. Calculations were made for both a single airfoil and a cascade

under each of the specified blade motions. The last case presented is a quasi-unsteady

calculation for a two-blade-row stator-rotor configuration.

Steady Flows

The main purpose of investigating flows past a biplane, i.e. two flat plates, is

threefold: to examine the accuracy of the prediction when compared to an exact solution: to

numerically explore the limits of the prediction scheme; and to understand the prediction

capability of the nonlinear Kutta condition.

I-igurc 32 shows a schematic of the biplane geometry and inflow description. The

comparisons between the present calculated results and the exact conformal mapping

solutions in Fig. 3a correspond to a constant inflow angle a =20°, and various spacings

between two plates. When the spacing is large, pressure distributions are identical on the

two plates. As the spacing is reduced, a stronger interaction between the tvo plates is
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observed. The pressure of the lower surface of the upper plate approaches that of the

upper surface of the lower plate. Figures 3b and 3c show the effect of varying the inflow

angle under the condition of strong plate interaction. As a varies from 20' to 90', the

pressure on the lower surface of the upper plate stays nearly the same as that on the upper

surface of the lower plate. However, the lift generated by the lower plate is reduced as a

increases. The zero-lift a for the lower plate at h/c=0.228 is between 50' and 65'. For a

larger than the zero-lift value, the lower plate actually begins to generate negative lift.

When a approaches 90 ° as shown in Fig. 3c, the pressure curve for the upper surface of the

upper plate matches that for the lower surface of the lower plate, and similarly for the other

surfaces of both plates. The total lift of the two-plate system is zero. When the spacing

between the two plates increases at a =900, the pressures on the lower surface of the upper

plate and on the upper surface of the lower plate approach those of the other surfaces. At

h/c=9.708 as shown in Fig. 3c, the pressures on all the surfaces coincide and the interaction

between the two plates is minimum. Although in reality flow separates at high values of a,

the present numerical calculations serve the purpose of validating the implemented

numerical procedures under extremely severe flow conditions by comparing with the

conformal-mapping solutions. For all the cases predicted, the present results agree well with

the exact solutions and show extremely "clean" predictions at both the leading and the

trailing edges.

Steady flows through a cascade of NACA65-1210 blades were also examined.

Figure 4a shows the calculated blade pressure distributions compared to measurements

(Ilerrig et al., 1957) at two different inlet flow angles (a: 12.1T and 16.1 ° ) and blade stagger
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angles (E=-32.9' and -28.9'). Flow is at the design condition for the first case. The

predicted blade loading agrees well with the measurements. The computed blade-to-blade

pressure contours for flows past a single airfoil and a cascade are depicted in Figure 4b.

The results indicate that the pressure gradients for the cascade due to blockage is larger

than that of the single foil, particularly in the leading and trailing edge areas. The

computed flow turning angles through the cascade for both cases are 21.980 and 26.13'

versus the measured values of 19.6' and 23.30. If an estimated boundary-layer displacement

thickness of 0.4% of the chord, obtained based on a flat-plate boundary layer, at the trailing

edge is added to the airfoil ordinates, the calculated turning angles become 19.99' and 23.8'.

This modification in the calculation procedure indicates that the cascade exit flow angle

depends also on the viscous effect in the trailing-edge area.

The numerical error E of the present calculations was evaluated based on

E = [(30)
N l

where Cr, represents the exact pressure distribution. There are two cases in Fig. 5 to show

the numerical convergence versus the panel numbers used. The first case shown in Fig. 5a

is for nonlifting flows past a circular cylinder. The panel numbers used range from 20 to

600. The second case shown in Fig. 5b is for lifting flows past either a single NACA 0010

airfoil or two NACA 0010 airfoils. The exact pressure distributions used for calculating

errors are the numerical solutions of 1000 panels for the single airfoil and 500 panels for the

bifoil. The numerical convergence rate shown in Fig. 5b is independent of the number of

the airfoils, but it decreases as the angle of attack increases. Since the coarse grid points do
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not usually match with the finest grid points used as the exact solution, the convergence

dependency on the angle of attack relates to the inaccurate interpolated exact CP-

distribution in the leading-edge area when the slope becomes steep for large angles of

attack. Nevertheless, based on this analyss using 100 panels for a closed body indicates that

the error of the solution is under 1 0 4.

Unstady Flows

Figure 6a shows the calculated transient lift coefficients as a function of the airfoil

traveling distance for an impulsively moving NACA 0012 airfoil of 4% thickness at an angle

of attack of 50 and two cascades with different spacings (H) as compared to the exact

Wagner function (Fung, 1969) for a single airfoil. The wake pattern of the calculated single

airfoil case is depicted in Fig. 6b. Figure 6c shows the calculated vortex locations for the

three cases. The results indicate that the length of the transient phenomenon becomes

shorter for the cascade flow.

Figure 7 shows a similar comparison for oscillating NACA 0012 blades. The exact

solution plotted is the Theodorsen function (Fung, 1969) at a reduced frequency Wc/U of 17.

The time step chosen is to cover one period of the oscillating motion with minimum 25

points. The amplitude of the calculated lift coefficients using the present method, referring

to (CL)T versus r( = wt) in Fig. 7a, is smaller for the cascade data. The shed vortex patterns,

shown in Fig. 7c, of the single foil and the cascades are compared to the flow visualization

of Bratt (1950), shown in Fig. 7b, for a single NACA 0015 airfoil. The width of the cascade

vortex wakes in Fig. 7c is predicted to be slightly smaller than that of the single foil. This
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result demonstrates that the cascade effect is more important than the wake vortex structure

for predicting the blade loading.

Figure 8c shows the time history of the shed vortices for a NACA 0012 section at

zero angle of attack interacting with an incoming vortex initially located upstream of the

airfoil at yv/c=-0.13. The calculated instantaneous lifts versus vortex locations (the airfoil is

located between 0 and 1) for the single foil are shown in Fig. 8a as compared with Lee and

Smith 's (1987) solutions . The lift decreases first to a negative value, recovers quickly to a

positive value, and drops slowly to near zero when the vortex passes through the airfoil.

Two curves for different vertical separation distances between the airfoil and the vortex are

depicted. When the vortex is placed closer to the airfoil, the effect of producing a

fluctuating lift is more pronounced. Figure 8b shows the calculated lifts for both single foils

and cascades. For the cascade results, the fluctuation in lifts when the vortex passing

through the leading edge and the trailing edge of the airfoil is suppressed significantly. This

may suggest that vortical flows through turbomachinery blade passages are distributed in a

more orderly fashion than one might expect based on a single airfoil motion.

Figure 9 presents calculated 2D quasi unsteady two-blade-row cascade results and

corresponding 3D measurements (Dring et al., 1982). The turbine consists of a 22-blade

stator with pitch H=0.854c and a 28-blade rotor with pitch H=0.813c. Both the stator and

the rotor have round trailing edges. The gap between the two blade rows is 15% of the

stator chord. The calculated steady solutions under uniform flows of zero angles of attack

for each separate blade row are shown in Fig. 9a. Due to the fact that the unknown inlet

flow angle for the rotor blade row was specified incorrectly as an input parameter, the
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pressure prediction in the rotor leading edge area does not agree with the measured data at

all. The pressure prediction in the rotor trailing edge area is, bowever, independent of the

its inlet flow angle and relates to the viscous effect and the application of the Kutta

condition. Since the rotor operates at a reduced passing frequency of 2.8 (based on the

turbine diameter), both the stator trailing edge and the rotor leading edge sense a variation

of pressure. Figure 9b shows the "time-averaged" maximum and minimum pressure

distributions of the steady calculations for both stator-rotor blade rows at 10 different

relative blade locations, which represent a full cycle of the stator-rotor blade interaction.

The measured values shown in the Fig. 9b are also the time-averaged pressures and the

range of the unsteady fluctuating pressures (represented by the uncertainty symbols centered

at the time-averaged value). The calculated quasi unsteady pressure ranges are larger at the

stator trailing edge and the rotor leading edge than the measured ranges. They become

smaller elsewhere. The predicted large fluctuations near the stator and the rotor trailing

edges are associated with the round shapes when the Kutta condition is enforced at the

centers of the trailing-edge circular arcs. Since small trailing-edge separation bubbles are

expected for both the rotor and the stator, a more realistic location for applying the Kutta

condition would be some point outside the circular arcs. However, this influence will be

very localized. These results clearly demonstrate a strong potential effect of the stator flow

on the rotor flow. It also shows the capability and accuracy of the 2D potential-flow

calculations.
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CONCLUSIONS

A time-dependent potential-flow method is described to calculate the vortex shedding

and blade-vortex interaction for cascades and for single airfoils. Without a separation, the

steady potential-flow calculation has the capability of accurately predicting the cascade blade

loading. A simple inclusion of the boundary-layer displacement effect enables the present

calculation to predict the cascade exit flow conditions reliably. The unsteady interaction

phenomena between the incoming vortex field or the wake shedding vorticity field and the

airfoil are found to be similar for the single airfoil and cascade flows. The predicted

periodic blade lifts have smaller amplitude for the cascade flows. For the transient

calculations, i.e. the Wagner function prediction, the cascade flow approaches steady state

much faster than the single airfoil flow. The present calculation method has been shown to

be effective in predicting steady and unsteady flows through a multi-blade-row cascade.
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